EXPANDING FRACTIONS GENERATE HIDDEN INSIGHTS

The **repetend** of a rational number is the sequence of digits that repeat after the decimal point. For example, in \(\frac{1}{22} = .045454545 \ldots = .045 \), the **repetend** is 45.

1. Represent \(.037037 \ldots = .037 \) as a fraction. How about \(.6037037 \ldots = .6037 \) ?

2. Find the smallest positive integer \(n \) such that \(1/n \) has a repetend of length 4.

3. An \(n \)-parasitic (or Dyson) number is a positive integer which can be multiplied by \(n \) by moving its rightmost digit to the beginning. Find \(n \)-parasitic numbers for \(n=4 \) and \(n=2 \).

4. Define a rotation of an integer to be an integer with the same digits, in the same order, but possibly rotated in a circular fashion. For example, 3562, 5623, 6235, and 2356 are all rotations of each other. A cyclic number with \(n \) digits has the property that when it is multiplied by 1, 2, 3, 4, ..., \(n \), all the products are rotations of the original number. Find the smallest cyclic number with more than one digit.

5. For \(n \) from 1 to 5, fill in the following table with all the ways to make \(n \) cents from one- and two-cent stamps (where order of the stamps matters). Organize by the number of stamps used. Notice any patterns and explain them.

<table>
<thead>
<tr>
<th>Cost</th>
<th>1c</th>
<th>2c</th>
<th>3c</th>
<th>4c</th>
<th>5c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 stamp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 stamps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 stamps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 stamps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 stamps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. Think of a reasonable definition for the sum of an infinite number of terms. Try it on:

 a. \(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots\)
 b. \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots\)
 c. \(\frac{0}{1} + \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \cdots\)

7. Draw, and count the number of edges in, an \(n\)-dimensional hypercube for \(n = 0\) (point), \(n = 1\) (line), \(n = 2\) (square), \(n = 3\) (cube), and \(n = 4\). Can you find a general formula?

8. Write Pascal’s triangle by starting with a 1 in the top spot. For each cell in following rows, add the number above and to the left to the number above and to the right, substituting a zero if either number is not present. For example,

 \[
 \begin{array}{cccccc}
 & & & 1 & & \\
 & & 1 & 1 & & \\
 & 1 & 2 & 1 & & \\
 1 & 3 & 3 & 1 & & \\
 1 & 4 & 6 & 4 & 1 & \\
 \end{array}
 \]

 Let \(c_0=1\), \(c_1=2\), \(c_2=6\), ... be the terms on the central column of Pascal’s triangle.

 a) Each \(c_i\) represents some binomial coefficient \(\binom{n}{k}\), the number of ways to choose a subset of \(k\) items from a collection of \(n\) items, without replacement. Find \(n\) and \(k\) in terms of \(i\).

 b) Evaluate the first few values of the sequence

 \[
 c_0, c_0 c_1, c_0 c_1 + c_1 c_0, c_0 c_1 + c_1 c_0, c_0 c_2 + c_1 c_1 + c_2 c_0, c_0 c_3 + c_1 c_2 + c_2 c_1 + c_3 c_0, \cdots
 \]

 Notice any patterns and explain them.

Selected References