<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–20</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>84</td>
<td></td>
</tr>
</tbody>
</table>
Show all work.
Circle the correct answer. Each problem is worth 3 points.

1. The number of subsets of the set $A = \{1, 2, 3, 4, 5\}$ is
 a) 16 b) 32 c) 15 d) 5

2. The number of subsets of the set $A = \{1, 2, 3, 4, 5\}$ which have 2 elements is
 a) 5 b) 15 c) 10 d) 6

3. The sentence $p \rightarrow q$ is equivalent to
 a) $q \rightarrow p$ b) $\sim q \rightarrow p$ c) $\sim p \rightarrow \sim q$ d) $\sim q \rightarrow \sim p$

4. If $A = \{1, 2, 3, 4, 5\}$ and $B = \{1, 2, 3, 6\}$ then $A \cup B$ is
 a) $\{1, 2, 3, 4, 5, 6\}$ b) $\{1, 2, 3, 4, 5\}$ c) $\{1, 2, 36\}$ d) $\{1, 2\}$

5. If $A = \{1, 2, 3, 4, 5\}$ and $B = \{1, 2, 3, 6\}$ then $A' \cap B$ is
 a) $\{1, 2, 3, 4, 5, 6\}$ b) $\{1, 2, 3, 6\}$ c) $\{6\}$ d) $\{1, 2, 3\}$

6. If $n(A \cup B) = 12$, $n(A) = 5$, and $n(B) = 10$, then $n(A \cap B)$ is
 a) 17 b) 3 c) 0 d) 7

7. If $n(A \cap B') = 10$, $n(A) = 12$, and $n(B) = 12$, then $n(A \cup B)$ is
 a) 22 b) 10 c) 12 d) 20

8. In a room with 14 cows and 20 pigs, how many ways can you choose 4 cows and 3 pigs?
 a) $C_{20,4}C_{14,3}$ b) $C_{20,3}C_{14,4}$ c) $C_{20,3}C_{17,4}$ d) $C_{34,3}C_{31,4}$
9. $P_{10,2} =$
 a) 90 b) 100 c) 20 d) 45

10. $C_{8,6} =$
 a) 28 b) 48 c) 20,160 d) 40,320

11. $6! =$
 a) 6 b) 24 c) 120 d) 720

12. The number of possible 5 digit zip codes allowing repeated digits is
 a) 50 b) $P_{10,5}$ c) $C_{10,5}$ d) 10^5

13. The number of possible 5 digit zip codes with only digits 1 and 3 is
 a) 10 b) 100 c) 32 d) 50

14. The number of possible 5 digit zip codes with exactly three 9’s and two 8’s is equal to
 a) 120 b) 20 c) 10 d) 90

15. The number of possible 5 digit zip codes with exactly four 9’s is equal to
 a) 10 b) 45 c) 125 d) 5

16. The number of different pizzas you can order if there are 3 different sizes and 4 different topping is
 a) 48 b) 12 c) 72 d) 7
17. If you flip a fair coin 3 times, what is the probability that you get two tails?
 a) 2/3 b) 3/8 c) 3/5 d) 1/2

18. If you flip a fair coin 4 times, what is the probability that you get two tails?
 a) 1/2 b) 2/5 c) 3/8 d) 7/16

19. If you roll a fair die what is the probability you don’t get a 4?
 a) 5/6 b) 4/5 c) 1/6 d) 3/4

20. How many different ways can you arrange the letters in KOOK into different words?
 a) 3 b) 6 c) 12 d) 16
Show any necessary work

21. Here \(\sim p \) is “not \(p \).”
(8 points, 4 each)
 a) Make a truth table for \((\sim p \land \sim q) \rightarrow q \).

 b) Show \(\sim (q \land p) \) is equivalent to \(\sim p \lor \sim q \).

22. If \(n(A') = 20 \), \(n(U) = 50 \), \(n(B') = 10 \), \(n(A' \cap B) = 14 \), fill in a Venn Diagram and find
 a) \(n(A) \) and
 b) \(n(A \cup B) \).
(8 points)

23. In a classroom with 5 dogs, and 6 cats, and 20 chickens, how many ways are there to pick a president, a vice president, and a committe of 4 dogs, 2 cats, and 6 chickens?
(8 points)